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Abstract. Low-density series expansions for the backbone properties of two-dimensional bond
percolation clusters are derived and analysed. Expansions for most of the 14 properties
considered are new and are obtained to orderp18 on the square lattice and orderp14 on the
triangular lattice. Earlier series work was confined to three properties of the square lattice and
was to orderp10. The fractal dimension of the bonds or sites in the backbone is estimated to be
DB = 1.605±0.015 and is intermediate between a previously conjectured field theory value and
the latest Monte Carlo results. The union, intersection and length of the longest self-avoiding
paths are found to have the same fractal dimension which is close toDB and consistent with
the field theory conjecture forDB. On the other hand, the union intersection and length of the
shortest paths are found to have different dimensions and in the case of the intersection, the
triangular and square lattices are found to have sigificantly different dimensions. The fractal
dimension of the shortest path also appears to be non-universal and we finddmin = 1.106±0.007
for the square lattice and 1.148± 0.007 for the triangular lattice. Critical amplitude ratios are
considered and found to be in agreement with theoretical inequalities.

1. Introduction

The backbone of the infinite cluster above the percolation thresholdpc was considered by
Skal and Shklovskii [1] and de Gennes [2] in their theoretical work on the critical behaviour
of the conductivity of random resistor networks. The backbone was defined as that part of
the cluster which can carry current when electrodes are placed across opposite faces of a
rectangular sample. Later, Pike and Stanley [3] focused their attention on the geometry of
the backbone and used Monte Carlo methods to estimate its fractal dimension,DB, and that
of the cutting bonds. Here we study the fractal geometry of percolation clusters by series
expansion methods.

Harris and Fisch [4] showed that series expansions in powers ofp, the probability that
a given bond is conducting, may be obtained by considering only finite clusters. They
studied the resistive susceptibilityχR(p) and showed that the exponentγR with which it
diverges asp approachespc from below also determines the way in which the conductivity
of the infinite cluster approches zero from abovepc. Later, Hong and Stanley [5] obtained
similar expansions for the geometrical properties of the backbone, the exponents of which
determine the fractal dimensions.

0305-4470/97/186215+18$19.50c© 1997 IOP Publishing Ltd 6215
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For any configuration and pair of lattice sites{u, v}, the u − v backbone,buv, may
be defined as the two-rooted graph formed by taking the union of all paths of conducting
bonds connectingu and v. If u and v are not connected thenbuv is the null graph. A
u−v backbone variableZuv is a random variable whose value in any configuration depends
only on buv. The corresponding ‘susceptiblity’χZ(p) is defined in a similar manner to the
resistive susceptibility [4] by

χZ(p) =
∑
v

E(Zuv) (1)

where the expected valueE is taken over all configurations of conducting bonds and is
independent ofu since all sites are assumed to be equivalent.

The Zuv we consider are the numbers of bonds or sites in various subsets of the
backbone. ThusχZ(p) will diverge asp approachespc from below and we denote the
corresponding dominant critical exponent byγZ. Another divergent function is the expected
number of sites,S(p), which are connected tou by a path of conducting bonds and has
critical exponentγ . The average value ofZuv may be estimated by normalizing the sum
in (1) by dividing byS(p) and the resulting function has critical exponentζZ = γZ − γ . If
Zuv is the size of some subset of bonds or sites the fractal dimension of the subset is given
by dZ = ζZ/ν whereν is the critical exponent of the connectedness length. For example, if
Zuv is the number of bonds in the whole backbonebuv thendZ = DB, the fractal dimension
referred to above.

In this paper we analyse the series expansions corresponding to 14 differentZuv
variables. The first four of these are the numbers of bonds or sites in either the union
or intersection of all paths connectingu andv and the correspondingζZ exponents will be
denoted byζBU, ζSU, ζBI andζSI. Note thatζBU = νDB since the union of paths gives the
whole backbone. The bonds which lie in the intersection are also known as nodal or cutting
bonds and Coniglio has shown [6] thatζBI = 1. A further four functions may be defined by
considering only the shortest paths connectingu andv. The union of these paths has been
called the elastic backbone [7] and its fractal dimension denoted byDE. A certain duality
has been shown to exist between shortest and longest paths [8] and we also consider the
susceptibilities arising from the numbers of bonds and sites in the union and intersection of
the longest self-avoiding paths. The final two functions we consider are obtained by taking
Zuv to be the length of either the shortest path or the longest self-avoiding path in the
backbone the exponents of which are denoted byζmin andζmax. The first of these exponents
is related to the spreading dimensiond̂ [9, 10], by d̂ = 1/ζmin where in two dimensions
the gap exponent1 has the value [11]91

36.
The exponents defined above clearly satisfy the following constraints, some of which

were given by Coniglio [12]. The exponents for the whole backbone satisfy

ν 6 ζmin 6 ζmax6 ζSU = ζBU. (2)

For the shortest paths

ζBI = ζSI 6 ζmin 6 ζSU = ζBU (3)

and for the longest paths

ζBI = ζSI 6 ζmax6 ζSU = ζBU. (4)

The equalities for bond and site unions follow from the fact that the union of paths is a
connected subgraph of the lattice and if such a graph hass sites andb bonds then

s − 16 b < 1
2zs (5)
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wherez is the lattice coordination number. Similarly, the bond and site intersections are
subsets of the elements of a single chain and the equality of the intersection exponents
follows from the relation

b + 16 s 6 2b. (6)

Hong and Stanley [5] obtained series expansions forχBU(p), χmin(p) and χBI(p) to
orderp10 on a general hypercubic lattice. Here the susceptibilities are those corresponding
to all paths. By restricting our attention to the square lattice we have extended their work
by a further eight terms and obtained agreement with all but their last term. More recently,
Adler et al [13] derived an expansion to orderp13 for a function having the same critical
exponent asχBU(p). This arose in their study of the moments of the current distribution
and is the zeroth moment of that distribution. It is in fact equal to the number of bonds in
the path union which actually carry a non-zero current. Some bonds in the union carry zero
current due to symmetry, for example this will occur for a balanced Wheatstone bridge.
The smallest example of this on the hypercubic lattice occurs at order 7 which accounts
for the fact that only the first six terms of [13] agree with Hong and Stanley [5] who
used the definition given here. In order to obtain further independent estimates of the
two-dimensional critical exponents we have also generated the first 14 terms for the same
functions on the triangular lattice.

Recent Monte Carlo work on the fractal dimensionDB has produced apparently very
accurate results which disagree with the rational valueDB = 1 9

16 = 1.5625 allowed by
conformal field theory which was considered as a possibility by Larsson [14] and conjectured
as exact by Saleur [15]. Using high-statistics simulations of bond percolation on the square
lattice, Grassberger [16] foundDB = 1.647±0.004 and independently Rintoul and Nakanishi
[17] obtainedDB = 1.64±0.01. The large majority of our estimates favour the intermediate
valueDB = 1.605± 0.015 but it is possible to find series and methods of analysis which
agree with either the Monte Carlo or field theory values. Earlier Monte Carlo work gave
1.62± 0.02 for bond percolation on the square lattice [18] and for the triangular lattice,
1.61± 0.01 for site percolation [19] and 1.62± 0.06 for bond percolation [20]. The series
analysis of Adleret al [13], using their 13 term expansion of the zeroth moment of the
current distribution, gaveDB = 1.55± 0.06 in agreement with the field theory. However,
they comment that a higher value would be found by adjusting the correction to scaling
exponent to agree with that obtained from the mean size expansion.

Our results for the intersection of all paths confirm Coniglio’s result [6]

χBI(p) = S ′(p) (7)

term by term in the expansion, which leads toζBI = 1, and our analysis of theχSI(p)

expansions is consistent withζSI = 1.
Table 1 shows theζ -exponents corresponding to the shortest path susceptibilities.
The results are consistent with the equalities in (3) and we conclude that the inner

inequalities are strict (ζSI < ζmin < ζSU). By comparison, Herrmannet al [7] found from
Monte Carlo on the square lattice thatζSI = ζmin = ζSU = νDE with DE = 1.10± 0.05.

Table 1. Estimates of theζ -exponents from the ‘shortest path’ series.

ζBI ζSI ζmin ζSU ζBU

Square 1.34± 0.03 1.38± 0.03 1.475± 0.010 1.58± 0.02 1.58± 0.02
Triangular 1.47± 0.01 1.47± 0.01 1.53± 0.01 1.57± 0.02 1.58± 0.01
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Our exponents for path unions are the same for square and triangular lattices and give
a fractal dimension for the elastic backboneDE = 1.185± 0.015. However, it can be seen
from table 1 that the exponents for the path length and path intersection appear to depend
on the lattice which raises the question of possible non-universality for these functions. The
difference for the intersection is well outside our estimated errors. Converting to fractal
dimensions we finddmin = 1.106± 0.007 on the square lattice anddmin = 1.148± 0.007
for the triangular lattice. A difference in the same direction exists in the more recent Monte
Carlo values 1.130± 0.002 [9], 1.1307± 0.0004 [16] for the square lattice and 1.15± 0.02
[19] for the triangular lattice. Earlier estimates ofζmin are summarized in [10] where it is
denoted byν‖.

Note thatζ for the path intersection on the square lattice is close toν = 4
3 which means

that this subset is essentially one-dimensional whereas for the triangular lattice it has fractal
dimension 1.10± 0.01 similar to that for the shortest path length on the square lattice.

In the case of the longest paths our analysis strongly suggests that all of the exponents in
(4) are equal, indicating that there is typically only one longest self-avoiding path between
two connected sites in any given configuration. The values for the triangular lattice are
better converged and are all consistent with a common exponentζmax= 2.08± 0.03. Some
of our estimates for the square lattice lie below this range but the results are generally less
well converged and there is no strong evidence of non-universality. It is interesting to note
that ζmax = 25

12 is a possible rational value which would be equal toνDB using the field
theory value [14, 15] ofDB andν = 4

3. From (2) it follows thatζmax 6 νDB and equality
would hold if the longest self-avoiding path were typically close to Hamiltonian.

2. Derivation of the series expansions

The methods used in deriving the series expansions have been described previously [8, 21].
To order 16 on the square lattice we used both the ‘weight factor’ method and the ‘extended
perimeter method’ to provide a check on the programming. However, when many different
functions are being expanded the latter method is more efficient and this was used to extend
the square and derive the triangular lattice series. The methods will now be summarized.

A set of self-avoiding paths connecting the root points of a two-rooted graph will be
said tocover the graph if every edge belongs to at least one of the paths. A two-rooted
graph is a backbone if the set of all self-avoiding paths covers the graph. To obtain the
expansions to orderpn both methods require the compilation of a list of non-isomorphic
subgraphs{g1, g2, . . .} of the lattice which can be made into backbones by choosing two of
the vertices to be root points. LetB(gi) be the set of all possible backbones obtained by
assigning the root labelsu andv to two of the vertices ofgi . For example ifgi is a chain
of any length then just two backbones can be formed by rooting the terminal vertices. Let
the list be partially ordered so that ifi < j thengi ⊂ gj . The lattice constantLi of gi is
the number of inequivalent ways in whichgi can occur as a subgraph of the lattice where
two subgraphs are equivalent if they differ only by a translation. The number of edges in
gi will be denoted byεi .

The weight factor method is the simplest to describe and is based on the formula

χZ(p) =
∞∑
i=1

WZ(gi)Lip
εi (8)

where the weightWZ(gi) depends onZ andgi but is independent of the lattice. It may be
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Table 2. Correspondence betweenZ andZ∗.

Z U X Umin Umax Xmin Xmax Lmin Lmax

Z∗ X U Xmax Xmin Umax Umin Lmax Lmin

written

WZ(gi) =
∑

b∈B(gi )
w(b). (9)

The partial weightw(b) of the backboneb is given by

w(b) =
∑

K⊆P :K coversb

(−1)|K|+1Z∗K (10)

whereP is the set of all self-avoiding paths connecting the roots ofb. It is shown in [8]
that Z∗ is in some sense dual toZ. Thus if Z = X, the number of elements (bonds or
sites) in the intersection ofP , thenZ∗K = UK , the number of elements in the union of the
pathsK. Further, ifZ = Xmin, the number of elements in the intersection of the shortest
paths ofP , thenZ∗K = Umax

K , the number of elements in the union of the longest paths in
K. Table 2 lists all of the required correspondences.Lmin andLmax are respectively the
lengths of the shortest and longest paths.

The extended perimeter method [21] is essentially a rearrangement of the weight factor
method in which the weight is calculated directly in terms ofZ and is therefore easily
changed to obtain the expansion of a different function. The penalty for this is that the
lattice informationLipεi has to be replaced by an infinite seriesθi(p) which is truncated at
orderpn. The method uses the following equations

χZ(p) =
∞∑
i=1

Y (gi)θi(p) (11)

with

Y (gi) =
∑

b∈B(gi )
Z(b). (12)

The θ functions are calculated by solving the following equations recursively
m∑
j=1

Bij θj (p) = Lipεi (13)

wherem is the number of graphs in the list with6 n edges andBij is the number of
subgraphs ofgj which are isomorphic togi . The matrixB is upper triangular as a result
of the assumed ordering of the graphs. Theθ function of a given graphgi is obtained by
starting withLipεi and subtracting a linear combination of theθ functions of its supergraphs
which are in the list. Thus, if the series are required to orderpn then, correct to this order,
graphs withn edges haveθi(p) = Lipn. Graphs withn− r edges haveθi(p) = pn−rφi(p)
whereφi(p) is a polynomial of degreei. The extended perimeter method is demonstrated
to orderp7 in [21].

Both methods require generation of the graph list and corresponding lattice constants
which was done in the following stages.

(a) A list G of lattice subgraphs is made having no articulation points and6 n edges.
(b) Two further listsR1 andR2 are made by rooting the graphs ofG with one or two

roots respectively in all possible inequivalent ways.
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(c) A list of nodal graphsN is made by stringing together the graphs inR1 andR2.
A nodal graph withk non-nodal parts{h1, h2, . . . , hk} is obtained by choosingh1 andhk
from the listR1 and any intermediate non-nodal parts are chosen fromR2. The graphs are
then joined at their root points in all possible ways taking account of symmetry to avoid
duplicates.

(d) The listsG andN are merged in the required partial order and stored on disk for
further processing.

(e) The lattice constant is calculated for each graph and stored along with its description.
In the weight factor method theZ∗ functions for the path subsets are computed and

hence the weightW is calculated for each graph in the list. The series are then formed
using (8).

In the extended perimeter method theθ functions are next calculated and then the
weightsY in terms ofZ. The calculation ofY is relatively fast since path subsets are not
required. The series are then formed using (11).

The resulting expansions for the triangular and square lattices are given in the appendix.
In calculating the size of the site unions and intersections we have not counted the intial
site u and path length is measured in terms of bonds rather than sites. These conventions
make the constant term in all of theχ expansions equal to zero. Since we are considering
bond percolation the siteu is always present and the effect of counting this site would be
to make the first term of theχ expansion equal to 1 and hence the critical exponent would
be unchanged. In estimating the critical exponents we have considered the expansions with
the first term equal to both 0 and 1.

The correctness of our graph generation code was checked by comparison with the
results of Conway and Guttmann [22] who generated the first 18 terms of the mean size by
bonds on the square lattice by an independent method.

3. Analysis of the expansions

The expansions were analysed on the assumption that asp approachespc from below

χZ(p) ∼= AZ(1− p/pc)−γZ (1+ a(1− p/pc)11 + higher-order terms) (14)

whereγZ is the critical exponent and11 is the leading correction to scaling exponent. The
subscript indicates that11 is the first of a sequence11,12, . . . of correction exponents and
distinguishes it from the gap exponent1 of the cluster size distribution. The dependence
of 11 on Z has been supressed but we have no reason to believe that it is the same for
all properties considered. This is a notational convenience and the relevant property will
always be clear from the context. For the square latticepc = 1

2 and for the triangular lattce
pc = 2 sin(π/18).

For each of the 28χ expansions we have obtained nine estimates of the corresponding
critical exponent. Three Padé approximant methods which allow for corrections to scaling
were used; the method of Adleret al [23] which was called M2 in [24], the M1 method
[24] and the method of Baker and Hunter (BH) [25]. Each method was applied to the
expansions of 1+ χ(p), χ(p)/p and dχ(p)/dp. The error assigned to each estimate is a
measure of the consistency of the corresponding Padé approximants but the overall error in
a given exponent is better measured by the spread in the different estimates (see also [26]).

The M2 method was nearly always satisfactory and gave the best convergence. The
BH method frequently gave results which were difficult to analyse due to the occurrence
of defects which disturbed the estimate of the dominant exponent and made a meaningful
estimate of11 impossible. These defects occurred mainly in the higher-order approximants
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and in this case disappointingly little use could be made of the terms of the expansion which
contained the most significant information.

The results of the exponent analysis are listed in tables 3, 5, 6, 8–10. In the tables an
asterisk by the Baker–Hunter estimate means that no satisfactory estimate of11 could be
obtained due to the widespread appearance of defective approximants. A dagger in an M2
row indicates that theγ versus11 distribution was poorly converged but rather flat so that
γZ could be estimated but not11. A double dagger in an M1 or M2 row indicates that
there was a strong variation ofγ with 11 with no obvious converged region so that neither
exponent is estimated.

The critical amplitudeAZ was estimated by a method similar to M2. Assuming a value
for γZ the series expansion ofαZ(p) = χZ(p)(1−p/pc)γZ in powers ofp was first formed.
Corrections to scaling were taken into account by using the transformation

p = pc(1− (1− y) 1
z ). (15)

In terms ofy

αZ(p(y)) ∼= AZ(1+ a(1− y)11/z). (16)

Assuming a value ofz, p was expanded as a series of powers ofy and then substituted into
the expansion ofαZ(p). Pad́e approximants were then made to the resulting series iny and
evaluated aty = 1 to obtain an estimate ofAZ. A sequence of values ofz in the range
0.5–3.5 was used and, from (16), the best convergence should be obtained whenz = 11

since the first correction to scaling is then analytic as a function ofy. In cases when two
functions have the same critical point and exponent the ratio of their amplitudes may be
estimated in a similar way by first forming the power expansion of the ratio of the functions
and using it instead ofαZ(p).

3.1. Intersection and union of all paths

3.1.1. Intersection of all paths.Table 3 shows the estimates ofζ for the number of bonds
and sites in the intersection of all paths (nodal bonds and sites in the backbone). The
column headings emphasize thatζZ is obtained by estimatingγZ and then subtracting the
valueγ = 2 7

18 [11] which is normally accepted as being exact.
Coniglio has shown thatζBI = 1 and in the introduction we showed thatζSI = ζBI

so that our data is merely indicating the accuracy to be expected in the subsequent series
analysis. Notice that the error bars on individual estimates are smaller than the general
spread of values and that the exact value in many cases falls slightly outside the quoted
ranges. For the triangular lattice the estimates ofζSI are consistently a few per cent higher
than the theoretical value. This will be relevant to the discussion of results in subsequent
cases when exact values are not known. It must be borne in mind that the error bars are a
subjective measure of the convergence of the Padé approximants and are not strict bounds.
The general spread is therefore a more reliable indicator of the accuracy. The observations
on the data of table 3 made in the following two paragraphs apply to all subsequent tables.

In methods M1 and M2 a range of Padé approximants is considered, each of which
would determine the exact values ofγZ and11 if the higher-order terms in (14) were not
present. In practice a given approximant defines a curve in theγZ −11 plane and with the
aid of a graphics displays a region of the plane is then sought in which the majority of curves
have coalesced. The quoted ranges ofγZ and11 define the limits of this region. Notice
that the range of11 is much wider than that of the leading exponent. More importantly,
the estimates of11 for a given property and lattice depend quite strongly on the series and
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Table 3. Estimates of theζ -exponent for the intersection of all paths.

Square Triangular

γBI − γ 11 γBI − γ 11

(a) Bond Intersection
M2 1.01± 0.01 1.30± 0.07 0.99± 0.01 1.1± 0.1

1+ χBI M1 1.04± 0.04 1.45± 0.15 0.99± 0.20 0.8± 0.2
BH 1.00± 0.03 1.13± 0.12 0.97± 0.03 0.9± 0.2

M2 0.98± 0.02 1.30± 0.09 0.99± 0.20 2.15± 0.15
χBI/p M1 ‡ ‡ 0.993± 0.004 2.2± 0.3

BH 0.99± 0.03 1.09± 0.11 0.98± 0.01 2.2± 0.7

M2 1.04± 0.04 1.55± 0.05 1.00± 0.02 1.1± 0.1
dχBI/dp M1 1.03± 0.02 1.5± 0.3 0.99± 0.01 0.9± 0.2

BH 1.01± 0.03 1.2± 0.2 0.98± 0.02 0.94± 0.07

γSI − γ 11 γSI − γ 11

(b) Site intersection
M2 ‡ ‡ 1.05± 0.02 1.60± 0.08

1+ χSI M1 ‡ ‡ 1.03± 0.02 1.25± 0.05
BH 1.01± 0.06 1.25± 0.12 1.03± 0.03 *

M2 1.05± 0.02 1.6± 0.2 1.08± 0.03 1.25± 0.07
χSI/p M1 ‡ ‡ ‡ ‡

BH 0.98± 0.02 1.29± 0.13 1.06± 0.05 1.14± 0.09

M2 1.04± 0.03 1.30± 0.05 1.03± 0.02 1.25± 0.05
dχSI/dp M1 ‡ ‡ 1.02± 0.01 0.9± 0.15

BH 1.02± 0.03 1.30± 0.11 * *

method used. The functions 1+ χZ, χZ/p have the same two leading exponents but the
higher-order terms are different. DifferentiatingχZ with respect top shifts all the exponents
by 1 but changes the relative amplitudes. Also, the preprocessing which is carried out in
the M1 and M2 methods treats the higher-order terms differently. The wide spread of11

estimates is showing that a two-exponent fit is not really adequate and that only an effective
correction to the scaling exponent is being estimated. Much longer series would be required
before the true leading correction to scaling exponent could be singled out. However, the
inclusion of11 in the analysis is important in producing more reliable estimates of the
leading exponent [23, 24].

In principle the BH method allows all of the correction to scaling exponents to be
estimated by defining a modified function which has a different pole for each correction
term. The leading exponent comes from the pole closest to the origin and with only a
limited number of terms in the expansion of this function available the poles in the Padé
approximants often only give good convergence to this pole. The poles further away from
the origin are much less well represented by the approximants and it is sometimes impossible
to determine even the first correction. The range of11 given in the table was determined
only from those approximants for which the estimate ofζZ fell within the quoted range.

SinceχSI andχBI have the same critical point and exponent, their amplitude ratio may
be found by the method described in the introduction to this section. The results for the two
lattices are shown in table 4 together with the estimated correction to scaling exponents.
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Table 4. Amplitude ratios for the intersection and union of all paths.

Square Triangular

Ratio 11 Ratio 11

ASI/ABI 1.255± 0.007 1.18± 0.04 1.335± 0.015 1.4± 0.1
ABU/ASU 1.188± 0.004 1.43± 0.04 1.266± 0.009 1.52± 0.08

The ratios depend on the choice of11 and the error bars on the ratios correspond to those
chosen for this exponent.

The range of the amplitude ratios is determined by equation (6) which gives

16 ASI

ABI
6 2. (17)

The lower limit corresponds to the nodal bonds being connected in a single chain whereas
the upper limit would be achieved if the nodal bonds were completely disjoint. The values
we find suggest that the nodal bonds form chains of average length 4 for the square lattice
and 3 for the triangular lattice.

3.1.2. Union of all paths. The data for the union of all paths is given in table 5.
Bearing in mind our comments for the path intersection data, the estimates are consistent

with the exact relationζBU = ζSU. For the path union the exponent is unknown but there
is a conjectured exact valueζBU = 25

12 = 2.083 33. . . based on conformal invariance [15]
and accurate Monte Carlo estimates 2.196± 0.005 [16] and 2.19± 0.01 [17]. Our results
mostly lie between the theoretical and Monte Carlo values. Those for the bond union are
clustered around 2.14 which is midway and the site union results for the square lattice are
consistent with this. On the other hand, the site union results for the triangular lattice are
scattered around the Monte Carlo value. However, our estimates for the site intersection
exponent on the triangular lattice were above the exact value and we therefore favour the
square lattice data.

The amplitude ratioABU/ASU is estimated in table 4. From (5) it follows that

16 ABU

ASU
6 1

2
z. (18)

The lower limit corresponds to the backbone being a single chain whereas the upper limit
would be achieved for compact clusters. The data suggests an effective coordination number
for sites in the backbone of about 2.4 for the square lattice and 2.5 for the triangular lattice.
We note that by going from the square lattice to the triangular lattice the amplitude ratios
for the intersection and union increase by the same factor.

3.2. Union, intersection and length of shortest paths

The data for the union and intersection of shortest paths are given in table 6.
Again the results are clearly consistent with equality of bond and site exponents for

both union and intersection. The only surprising feature of the exponents is that in the case
of the intersection, the results for the square and triangular lattices are very different. The
value for the square lattice corresponds to a fractal dimension of about 1, whereas that for
the triangular lattice is 10% higher. This difference is well outside the error to be expected
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Table 5. Estimates of theζ -exponent for the union of all paths.

Square Triangular

γBI − γ 11 γBI − γ 11

(a) Bond union
M2 2.128± 0.003 3.10± 0.15 2.14± 0.25 1.8± 0.2

1+ χBU M1 2.14± 0.01 2.2± 0.3 ‡ ‡
BH 2.14± 0.02 1.9± 0.4 2.14± 0.03 0.70± 0.03

M2 2.08± 0.02 1.60± 0.05 2.15± 0.02 1.4± 0.2
χBU/p M1 ‡ ‡ 2.15± 0.10 1.2± 0.4

BH 2.12± 0.05 1.47± 0.15 2.14± 0.01 1.87± 0.12

M2 2.140± 0.005 2.25± 0.05 2.20± 0.01 1.5± 0.1
dχBU/dp M1 2.138± 0.020 2.00± 0.25 2.16± 0.03 1.5± 0.2

BH 2.14± 0.02 1.56± 0.72 2.14± 0.02 0.7± 0.1

γSU− γ 11 γSU− γ 11

(b) Site union
M2 2.13± 0.03 1.55± 0.08 2.208± 0.002 2.00± 0.02

1+ χSU M1 2.13± 0.02 2.30± 0.25 2.25± 0.03 1.5± 0.5
BH 2.18± 0.03 0.97± 0.04 2.18± 0.03 1.13± 0.40

M2 2.08± 0.05 1.50± 0.15 2.19± 0.03 1.45± 0.05
χSU/p M1 2.09± 0.04 1.70± 0.15 2.14± 0.04 1.5± 0.5

BH 2.14± 0.30 1.93± 0.53 2.17± 0.07 1.53± 0.24

M2 2.11± 0.02 1.80± 0.05 2.21± 0.01 2.00± 0.12
dχSU/dp M1 2.14± 0.01 1.5± 0.2 2.22± 0.02 1.3± 0.2

BH 2.17± 0.02 1.05± 0.08 2.22± 0.02 2.0± 0.8

from the spread of results for each lattice taken separately and strongly suggests that this
exponent is non-universal.

The amplitude ratios for intersection and union are given in table 7. The same
inequalities apply as for the ‘all path’ ratios but for the shortest paths the ratios are closer to
the bottom of the ranges. This is particularly noticeable in the case of the path intersection
which means that the nodal bonds of the elastic backbone are partitioned into longer chains,
there being fewer parallel paths in the backbone. Based on the data, the average chain
length for large clusters is about 13.

The exponent estimates for the shortest path length are given in table 8. As for the nodal
bonds there is a noticeable difference between the exponents for the square and triangular
lattices but this time it is only 4% and may not be significant. The values lie between those
for the union and intersection in agreement with the inequalities of equation (3) which
appear to be strict. The exponent of the square lattice is the same as that for the nodal
bonds on the triangular lattice.

3.3. Union, intersection and length of longest self-avoiding paths

The main feature which is apparent from the longest path data in table 9 is that the exponents
for the union and intersection are the same and independent of the lattice.

In addition to the exact equality of bond and site exponents we further conjecture that
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Table 6. Estimates of theζ -exponent from the ‘shortest path’ series.

Square Triangular

γBU − γ 11 γBU − γ 11

(a) Bond union
M2 1.601± 0.004 1.25± 0.05 1.59± 0.01 1.75± 0.30

1+ χBU M1 1.59± 0.02 1.14± 0.04 1.58± 0.01 1.40± 0.15
BH 1.58± 0.02 1.6± 0.4 1.57± 0.02 1.44± 0.18

M2 1.58± 0.03 1.15± 0.06 1.54± 0.02 1.1± 0.2
χBU/p M1 1.58± 0.01 1.1± 0.2 1.59± 0.02 1.2± 0.3

BH 1.55± 0.02 1.35± 0.06 1.58± 0.04 1.04± 0.13

M2 1.60± 0.01 1.15± 0.03 1.58± 0.02 1.50± 0.15
dχBU/dp M1 1.58± 0.02 1.5± 0.2 1.59± 0.01 1.6± 0.2

BH 1.58± 0.01 1.3± 0.1 1.57± 0.05 1.45± 0.22

γSU− γ 11 γSU− γ 11

(b) Site union
M2 1.559± 0.003 2.20± 0.05 1.58± 0.01 1.80± 0.05

1+ χSU M1 1.57± 0.01 2.05± 0.20 1.57± 0.02 1.7± 0.2
BH 1.56± 0.01 1.9± 0.4 1.57± 0.01 1.64± 0.21

M2 1.54± 0.02 1.20± 0.15 1.55± 0.02 0.9± 0.2
χSU/p M1 1.56± 0.01 2.5± 0.2 1.56± 0.03 1.1± 0.3

BH 1.56± 0.03 0.95± 0.24 1.53± 0.03 1.1± 0.2

M2 1.561± 0.008 2.50± 0.04 1.57± 0.01 1.60± 0.04
dχSU/dp M1 1.56± 0.01 2.5± 0.2 1.56± 0.02 1.6± 0.2

BH 1.56± 0.01 2.40± 0.07 1.57± 0.01 1.70± 0.15

γBI − γ 11 γBI − γ 11

(c) Bond intersection
M2 1.337± 0.003 1.95± 0.02 1.49± 0.01 1.95± 0.17

1+ χBI M1 1.33± 0.02 2.2± 0.3 1.47± 0.2 2.0± 0.2
BH 1.33± 0.03 1.3± 0.3 1.47± 0.20 2.1± 0.4

M2 1.36± 0.03 † ‡ ‡
χBI/p M1 1.38± 0.02 1.10± 0.15 ‡ ‡

BH 1.34± 0.02 1.1± 0.2 1.50± 0.02 0.79± 0.30

M2 1.34± 0.02 2.20± 0.11 1.466± 0.007 1.80± 0.08
dχBI/dp M1 1.34± 0.01 2.2± 0.3 1.47± 0.20 2.0± 0.5

BH 1.36± 0.02 2.40± 0.08 1.46± 0.02 1.71± 0.04

γSI − γ 11 γSI − γ 11

(d) Site intersection
M2 1.37± 0.01 1.90± 0.06 1.47± 0.01 1.75± 0.05

1+ χSI M1 1.39± 0.02 2.25± 0.03 1.47± 0.01 1.80± 0.02
BH 1.39± 0.01 2.80± 0.04 1.49± 0.02 1.95± 0.33

M2 1.39± 0.03 0.90± 0.05 ‡ ‡
χSI/p M1 1.37± 0.02 2.02± 0.07 1.47± 0.04 1.5± 0.5

BH 1.36± 0.03 1.17± 0.04 1.49± 0.05 0.8± 0.3

M2 1.37± 0.01 1.85± 0.05 1.47± 0.01 1.7± 0.2
dχSI/dp M1 1.37± 0.20 2.07± 0.08 1.49± 0.02 2.0± 0.03

BH 1.38± 0.02 2.27± 0.09 1.47± 0.02 1.7± 0.2
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Table 7. Amplitude ratios for the intersection and union of shortest paths.

Square Triangular

Ratio 11 Ratio 11

ASI/ABI 1.073± 0.009 1.6± 0.2 1.052± 0.002 1.00± 0.04
ABU/ASU 1.082± 0.005 1.4± 0.1 1.054± 0.004 1.0± 0.1

Table 8. Estimates of theζ -exponent from the ‘shortest path length’ series.

Square Triangular

γmin − γ 11 γmin − γ 11

M2 1.483± 0.003 2.25± 0.05 1.53± 0.01 1.8± 0.2
1+ χmin M1 1.48± 0.02 1.20± 0.04 1.53± 0.01 1.85± 0.05

BH 1.48± 0.01 2.22± 0.24 1.53± 0.02 1.84± 0.19

M2 1.47± 0.01 2.00± 0.02 1.54± 0.03 0.90± 0.05
χmin/p M1 1.47± 0.03 1.00± 0.05 1.53± 0.03 0.9± 0.1

BH 1.48± 0.02 2.8± 0.6 1.46± 0.04 1.21± 0.25

M2 1.47± 0.01 2.20± 0.05 1.53± 0.01 1.80± 0.05
dχmin/dp M1 1.47± 0.01 2.20± 0.03 1.53± 0.01 1.80± 0.05

BH 1.48± 0.02 2.21± 0.28 1.53± 0.02 1.74± 0.11

ζBI = ζBU. Equation (4) then implies that the longest path length exponentζmax also has
the same value. This is borne out by the path length data in table 10. The equality of these
exponents would be explained if the longest self-avoiding path between two points on a
typical cluster near the critical point were unique.

If, further, the longest path visited nearly all of the sites in the backbone then the path
length would be essentially equal to the number of sites and we would getζmax = νDB.
Comparing the data in table 5 with that in tables 9 and 10 we see that the estimates of
ζmax are about 3% lower and are closer to the rational value25

12 which is the field theory
conjecture [15] forνDB.

Assuming thatζBI = ζSI = ζmax = ζSU = ζBU we have determined the ratios of the
amplitudes corresponding to the last four exponents to that of the first and find that they
form an increasing sequence as expected. The data is given in table 11. The bond-to-site
ratios for both intersection and union are very close to 1 which is consistent with them
typically being a single longest path.

4. Discussion

Our results for the longest self-avoiding paths suggest that the union, intersection and length
exponents are all equal and the common value ofζ found is close to25

12 which is the field
theory value for the union of all paths [14, 15]. This would be explained if the longest
path on a typical backbone visited nearly all of the backbone sites. Our estimate ofζBU

for the union of all paths is about 3% higher than the field-theory value but in view of the
discussion in section 3.1.1 this difference may not be significant. However, the most recent
Monte Carlo results [16] give a value which is 6% higher than the field theory.
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Table 9. Estimates of theζ -exponent from the ‘longest path’ series.

Square Triangular

γBU − γ 11 γBU − γ 11

(a) Bond union
M2 2.06± 0.01 1.4± 0.1 2.11± 0.01 2.40± 0.05

1+ χBU M1 2.08± 0.02 1.35± 0.05 2.12± 0.01 2.6± 0.2
BH 2.05± 0.04 * 2.12± 0.03 2.63± 0.80

M2 2.06± 0.02 1.15± 0.05 2.11± 0.01 1.05± 0.05
χBU/p M1 2.05± 0.02 1.20± 0.01 2.11± 0.03 1.05± 0.15

BH 2.04± 0.03 1.33± 0.17 2.08± 0.03 1.47± 0.06

M2 2.05± 0.02 1.35± 0.05 2.11± 0.01 2.50± 0.15
dχBU/dp M1 2.06± 0.01 1.20± 0.01 2.116± 0.005 2.45± 0.07

BH 2.03± 0.04 1.52± 0.50 2.12± 0.02 2.72± 0.09

γSU− γ 11 γSU− γ 11

(b) Site union
M2 2.01± 0.01 1.70± 0.02 2.08± 0.03 2.40± 0.05

1+ χSU M1 2.02± 0.04 1.5± 0.3 2.095± 0.004 2.30± 0.15
BH 1.94± 0.06 * 2.10± 0.02 2.30± 0.01

M2 2.01± 0.01 1.2± 0.1 2.09± 0.02 1.05± 0.04
χSU/p M1 2.02± 0.30 1.2± 0.1 ‡ ‡

BH 2.02± 0.02 1.37± 0.08 2.05± 0.20 1.46± 0.13

M2 2.028± 0.005 1.35± 0.05 2.096± 0.002 2.60± 0.08
dχSU/dp M1 2.02± 0.02 1.2± 0.5 2.096± 0.005 2.45± 0.17

BH 2.02± 0.03 1.96± 0.15 2.10± 0.01 2.30± 0.01

γBI − γ 11 γBI − γ 11

(c) Bond intersection
M2 2.00± 0.02 1.25± 0.05 2.045± 0.006 2.55± 0.08

1+ χBI M1 2.02± 0.03 1.20± 0.15 2.059± 0.002 2.5± 0.2
BH 2.05± 0.05 1.25± 0.43 2.06± 0.02 2.81± 0.40

M2 1.99± 0.02 1.20± 0.05 2.05± 0.01 1.2± 0.1
χBI/p M1 ‡ ‡ ‡ ‡

BH 1.98± 0.07 1.4± 0.3 2.05± 0.30 1.35± 0.02

M2 1.99± 0.03 1.90± 0.01 2.052± 0.005 3.00± 0.18
dχBI/dp M1 ‡ ‡ 2.057± 0.002 2.70± 0.04

BH 2.04± 0.04 * 2.06± 0.02 2.44± 0.04

γSI − γ 11 γSI − γ 11

(d) Site intersection
M2 2.02± 0.02 1.5± 0.05 2.07± 0.02 2.6± 0.03

1+ χSI M1 2.04± 0.03 1.3± 0.06 2.07± 0.03 2.7± 0.06
BH 1.99± 0.04 2.21± 0.30 2.08± 0.02 2.6± 0.3

M2 2.02± 0.01 1.20± 0.05 ‡ ‡
χSI/p M1 2.02± 0.02 1.20± 0.05 2.06± 0.04 1.5± 0.7

BH 1.98± 0.07 1.48± 0.12 2.05± 0.02 1.43± 0.09

M2 2.04± 0.02 1.50± 0.06 2.075± 0.002 3.00± 0.05
dχSI/dp M1 2.04± 0.01 1.40± 0.05 2.06± 0.02 1.15± 0.05

BH 1.84± 0.07 1.00± 0.03 2.08± 0.02 3.06± 0.08
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Table 10. Estimates of theζ -exponent from the ‘longest path length’ series.

Square Triangular

γmax− γ 11 γmax− γ 11

M2 1.97± 0.02 2.00± 0.2 2.08± 0.02 2.30± 0.05
1+ χmax M1 ‡ ‡ 2.08± 0.02 1.40± 0.05

BH 2.00± 0.09 2.22± 0.26 2.09± 0.01 2.85± 0.20

M2 2.00± 0.02 1.50± 0.15 2.09± 0.01 1.25± 0.04
χmax/p M1 ‡ ‡ 2.07± 0.02 1.1± 0.2

BH 1.97± 0.08 1.5± 0.2 2.05± 0.02 1.36± 0.07

M2 1.98± 0.01 2.1± 0.2 2.09± 0.02 1.4± 0.1
dχmax/dp M1 ‡ ‡ 2.08± 0.02 2.4± 0.2

BH 1.94± 0.12 * 2.09± 0.01 2.86± 0.20

Table 11. Amplitude ratios for the longest paths.

Square Triangular

Ratio 11 Ratio 11

ASI/ABI 1.046± 0.006 2.30± 0.05 1.038± 0.003 2.0± 0.1
Amax/ABI 1.13± 0.01 1.90± 0.05 1.058± 0.005 2.3± 0.1
ASU/ABI 1.189± 0.003 1.94± 0.02 1.079± 0.004 2.4± 0.1
ABU/ABI 1.238± 0.005 2.00± 0.05 1.116± 0.007 2.2± 0.1
ABU/ASU 1.045± 0.002 2.10± 0.05 1.032± 0.003 2.15± 0.05

The exponents for the union, intersection and length of the shortest paths are found
to be different. The values are shown in table 1 and in the case of the union, the square
and triangular lattice estimates for both bond and site unions are consistent with a common
value as expected. On the other hand, the exponent estimates for bond and site intersections
agree well with the theoretical equality but they appear to be lattice dependent. As can be
seen from table 6, the difference between the lattices is consistently at the 10% level which
is much greater than any deviations from the theoretical value found for the intersection
of all paths in section 3.1.1. A difference of smaller magnitude but in the same direction
also occurs for the shortest path length but this is of smaller magnitude. It is difficult to
attribute the difference in the case of the intersection to errors arising from short series
effects in view of the general overall consistency of our results for other properties. This
apparent violation of universality deserves further investigation. We know of no field theory
formulations from which universality would follow in the case of shortest paths.
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Appendix

Square lattice: all paths

Bond Bond Site Site
n union intersection union intersection

0 0 0 0 0
1 4 4 4 4
2 24 24 24 24
3 108 108 108 108
4 400 352 388 364
5 1 372 1 180 1 324 1 228
6 4 296 3 168 4 044 3 420
7 13 020 9 744 12 256 10 448
8 37 072 22 624 34 084 25 412
9 104 052 68 472 96 128 74 960

10 278 456 143 120 251 840 165 656
11 742 236 432 828 675 828 481 300
12 1 899 104 836 448 1 697 124 989 708
13 4 881 536 2 569 060 4 397 412 2 885 252
14 12 068 880 4 455 248 10 672 092 5 419 464
15 30 189 440 15 201 360 27 026 472 16 983 064
16 72 698 936 20 462 592 63 591 408 26 454 948
17 177 995 708 91 165 560 158 861 544 99 938 008
18 419 317 760 79 539 912 363 158 568 115 407 424

Square lattice: shortest paths

Path Bond Bond Site Site
n length union intersection union intersection

0 0 0 0 0 0
1 4 4 4 4 4
2 24 24 24 24 24
3 108 108 108 108 108
4 368 376 360 372 364
5 1 244 1 276 1 212 1 260 1 228
6 3 532 3 696 3 368 3 620 3 444
7 10 776 11 276 10 284 11 040 10 512
8 27 084 29 016 25 184 28 164 26 004
9 79 112 84 308 74 092 81 952 76 272

10 183 132 200 176 166 696 192 900 173 396
11 521 604 565 196 480 140 546 020 497 244
12 1 137 460 1 265 256 1 016 552 1 212 108 1 063 448
13 3 209 276 3 525 744 2 912 768 3 389 284 3 030 436
14 6 535 720 7 406 344 5 724 136 7 053 072 6 025 256
15 19 165 128 21 216 204 17 277 044 20 341 400 18 004 016
16 34 442 416 40 040 840 29 272 560 37 828 492 31 114 436
17 112 760 768 124 990 396 101 708 092 119 770 008 105 890 168
18 168 817 788 202 649 304 137 870 000 189 660 356 148 430 860
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Square lattice: longest paths

Path Bond Bond Site Site
n length union intersection union intersection

0 0 0 0 0 0
1 4 4 4 4 4
2 24 24 24 24 24
3 108 108 108 108 108
4 384 392 376 388 380
5 1 308 1 340 1 276 1 324 1 292
6 3 932 4 096 3 768 4 020 3 844
7 11 936 12 408 11 456 12 184 11 680
8 32 460 34 288 30 600 33 476 31 412
9 92 224 96 856 87 416 94 720 89 552

10 235 260 250 976 219 064 244 100 225 916
11 638 892 676 772 599 148 659 476 616 412
12 1 558 364 1 674 672 1 437 640 1 623 764 1 488 124
13 4 104 932 4 378 044 3 816 924 4 253 148 3 941 188
14 9 622 632 10 415 752 8 796 448 10 069 576 9 138 288
15 25 069 504 26 825 116 23 210 192 26 008 048 24 019 288
16 56 044 256 61 184 832 50 687 960 58 961 380 52 877 396
17 147 335 064 157 753 572 136 235 152 152 784 728 141 137 424
18 312 180 572 343 782 624 279 293 256 330 228 708 292 596 900

Triangular lattice: all paths

Bond Bond Site Site
n union intersection union intersection

0 0 0 0 0
1 6 6 6 6
2 60 60 60 60
3 414 378 402 390
4 2 376 1 944 2 244 2 076
5 12 168 8 940 11 232 9 840
6 57 540 38 124 52 116 43 056
7 255 966 152 628 228 012 176 544
8 1 086 252 591 360 955 146 695 760
9 4 438 602 2 207 736 3 858 900 2 639 028

10 17 575 092 8 017 800 15 131 934 9 716 034
11 67 805 790 28 746 630 57 925 650 35 137 170
12 255 863 892 100 081 080 216 969 420 123 761 760
13 947 159 934 346 964 514 798 427 518 431 567 298
14 3449 198 736 1181 211 108 2891 756 988 1480 037 712
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Triangular lattice: shortest paths

Path Bond Bond Site Site
n length union intersection union intersection

0 0 0 0 0 0
1 6 6 6 6 6
2 60 60 60 60 60
3 390 390 390 390 390
4 2 088 2 112 2 064 2 100 2 076
5 9 978 10 134 9 822 10 056 9 900
6 44 166 45 312 43 020 44 784 43 548
7 183 690 189 198 178 230 186 624 180 756
8 735 420 764 772 706 404 751 962 718 902
9 2 837 544 2 957 508 2 719 992 2 903 700 2 771 496

10 10 644 540 11 203 044 10 098 912 10 968 870 10 321 794
11 39 171 978 41 232 996 37 173 900 40 333 938 38 015 034
12 140 741 538 149 679 696 132 102 972 146 055 348 135 475 512
13 499 516 200 530 083 518 470 166 606 516 970 254 482 193 426
14 1745 462 190 1873 971 588 1622 353 824 1823 575 512 1668 350 010

Triangular lattice: longest paths

Path Bond Bond Site Site
n length union intersection union intersection

0 0 0 0 0 0
1 6 6 6 6 6
2 60 60 60 60 60
3 402 402 402 402 402
4 2 232 2 256 2 208 2 244 2 220
5 11 094 11 262 10 926 11 172 11 016
6 51 042 52 164 49 920 51 600 50 484
7 221 244 226 776 215 652 223 896 218 544
8 918 570 945 864 890 940 932 052 904 824
9 3 678 150 3 796 458 3 557 406 3 734 796 3 619 680

10 14 297 466 14 808 996 13 776 012 14 545 026 14 042 238
11 54 312 144 56 363 856 52 209 924 55 282 086 53 304 510
12 201 809 142 210 022 572 193 404 624 205 699 062 197 770 482
13 737 550 168 768 650 016 705 647 112 751 980 714 722 504 970
14 2653 237 548 2772 100 584 2531 314 512 2708 706 114 2595 380 442
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